Sustainable Food Systems Development
Setting the Stage
An FAO framework

David Neven
Senior Economist FAO
Inclusive and Sustainable Agribusiness and Trade
ITC Staff Training Workshop
Geneva, January 22, 2018
Overview

1. The starting point:
 1. What is a food system?
 2. What is a sustainable food system?
 3. What is a food systems approach?
 4. Why take a food systems approach?

2. The evolution of food systems

3. Some key concepts
 1. Value-added
 2. Sustainability

4. Analytical framework – the Food System Wheel

5. Theory of change

6. Development paradigm

7. Practical implications

8. Open discussion
Food systems definition

Food systems encompass the entire range of actors and their interlinked value-adding activities involved in the production, aggregation, processing, distribution, consumption and disposal of agri-food products that originate from agriculture, forestry or fisheries, and parts of the broader economic, societal and natural environments in which they are embedded.

Adapted from FAO - SOFA (2013)
Sustainable food system definition

A sustainable food system is a food system that:

• Delivers food security and nutrition for all
• In such a way that the economic, societal and natural environment bases to generate food security and nutrition for future generations are not compromised; meaning that:

 ➢ It is profitable throughout (economic sustainability);
 ➢ It has broad-based benefits for society (social sustainability); and
 ➢ It has a positive or neutral impact on the natural environment (environmental sustainability).
What is a food systems approach?

- Adopting integrated solutions to food system challenges based on a holistic framing and deeper analysis of problems by a multi-disciplinary team.
Why take a food systems approach?

• Food systems are rapidly changing, getting more global, complex and interconnected – we need to change along with this

• It allows for better framing, analysing and solving of problems to tackle challenges or take advantage of new opportunities

• Only way to realize the SDGs as a whole.
Evolution of Food Systems

Population growth, urbanization, globalization, technological innovations, lifestyle changes, sustainability concerns

Traditional (pre-industrial) Modern (industrial) Alternative (post-industrial)
The concept of value-added...

- Non-labour cost
- Value added to society
- Market price
- Consumer willingness to pay

- Negative externalities
- Salaries/income
- Net profits
- Taxes
- Consumer surplus

- Positive externalities

FAO(2014)
The concept of sustainability

ECONOMIC IMPACTS
- Profits
- Jobs/incomes
- Tax revenues
- Food supply

SOCIAL IMPACTS
- Added value distribution (gender, youth, indigenous…)
- Cultural traditions
- Nutrition and health
- Workers rights and safety
- Animal welfare
- Institutions

ENVIRONMENTAL IMPACTS
- Carbon footprint
- Water footprint
- Water health
- Soil health
- Animal & plant health
- Food loss and waste
- Biodiversity
- Toxicity

Inclusive growth
Green growth
Eco-social progress

SFS
FAO (2014)
The Food System Wheel
The Food System Wheel
The Food System Wheel
SFS Theory of change

DRIVERS:
- Urbanization and income growth
- Technological changes
- Policy changes
- Change in behavior of lead actors
- Climate change
- Organizational changes
- Infrastructural changes
- Conflicts and natural disasters

STRUCTURE
- All the structural elements within the system

CONDUCT
- How people behave based on the structure of the system

PERFORMANCE
- Performances in term of sustainability
 - Holistic
 - Trade-offs

Incentives & Capacities
Positive and negative feedback loops
SFS development paradigm

- Poverty reduction
- Food security
- Nutrition

Multiplier loop

- More decent jobs
- Salary income

Enabling environment

- Return on assets
- Investment loop
- Wealth accrual

- Some become "entrepreneurs"

- Most find jobs

- Better food supply

Catalytic support

- Externalities loop

Progress loop

- Social support
- Taxes

- Most vulnerable populations

Catalytic support

- Progress loop

- All benefit

- SFS

Adapted from FAO(2014)
Practical Implications of taking a systems approach

1. Problem Framing

- Look at the “big picture” beyond the direct causes and consequences of a particular issue
- Look at the links, not just the elements
- Take the dynamics (feedback loops) of systems into account
- Consider the environmental, social and economic dimensions of system performance
Practical Implications of taking a systems approach

2. Problem Analysis

• Analyse the root causes, binding constraints, leverage points, key dynamics and underlying structures of the system

• Problems and solutions can exist in any part of the complex, adaptive system
Practical Implications of taking a systems approach

3. Problem Solving

- The food systems approach allows us to develop *integrated interventions* and *better-aligned programmes* through collaboration across disciplines and sectors, and within and between countries. It also facilitates:
 - A shift from short-term to long-term vision
 - A shift from re-active to pro-active policies
 - A shift from mechanical log-frame implementation to quick learning & adaptation
 - A shift from paying SPs to implement isolated activities (we do it) to tweaking existing elements and links to achieve systemic change (we facilitate the system to do it)
 - A shift from working with the MoA to facilitating inter-ministerial collaboration, alignment

- At FAO, food systems thinking helps us to work jointly with colleagues in other areas to *identify synergies and trade-offs*, therefore increasing effectiveness in each of the areas
Open floor for discussion
Exercise

What is wrong with the mangoes?
Exercise

Fill in the blank with the appropriate causes

<table>
<thead>
<tr>
<th>Aggregators have limited knowledge on packaging</th>
<th>Long distance to market</th>
<th>Mangoes are damaged during transport due to poor-quality packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retailers have limited knowledge on marketing strategies</td>
<td>Mangoes cannot be sold on time</td>
<td></td>
</tr>
<tr>
<td>Absence of raw materials to produce quality packaging at a competitive price</td>
<td>Lack of logistic services</td>
<td>High quality packaging products are not available</td>
</tr>
<tr>
<td>Lack of institutional or private sector support</td>
<td>Inefficient infrastructure support</td>
<td>Trade barriers constrain the supply of raw materials to produce packaging</td>
</tr>
</tbody>
</table>